Poisson-Nernst-Planck systems for narrow tubular-like membrane channels
نویسندگان
چکیده
We study global asymptotic behavior of Poisson-Nernst-Planck (PNP) systems for flow of two ion species through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previously studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous as the radius of the channel tends to zero.
منابع مشابه
Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics.
We test the validity of the mean-field approximation in Poisson-Nernst-Planck theory by contrasting its predictions with those of Brownian dynamics simulations in schematic cylindrical channels and in a realistic potassium channel. Equivalence of the two theories in bulk situations is demonstrated in a control study. In simple cylindrical channels, considerable differences are found between the...
متن کاملDielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels.
We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck th...
متن کاملA Poisson-nernst-planck Model for Biological Ion Channels — an Asymptotic Analysis in a 3-d Narrow Funnel
We wish to predict ionic currents that flow through narrow protein channels of biological membranes in response to applied potential and concentration differences across the channel, when some features of channel structure are known. We propose to apply singular perturbation analysis to the coupled Poisson-Nernst-Planck equations, which are the basic continuum model of ionic permeation and semi...
متن کاملA Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel
We wish to predict ionic currents that flow through narrow protein channels of biological membranes in response to applied potential and concentration differences across the channel when some features of channel structure are known. We propose to apply singular perturbation analysis to the coupled Poisson–Nernst–Planck equations, which are the basic continuum model of ionic permeation and semic...
متن کاملA numerical solver of 3D Poisson Nernst Planck equations for functional studies of ion channels
Recent results of X-Ray crystallography have provided important information for functional studies of membrane ion channels based on computer simulations. Because of the large number of atoms that constitute the channel proteins, it is prohibitive to approach functional studies using molecular dynamic methods. To overcome the current computational limit we propose a novel approach based on the ...
متن کامل